3D Bioplotter Research Papers

Displaying all papers by P. D. Kontoyiannis (4 results)

Effect of 3D Printing Temperature on Bioactivity of Bone Morphogenetic Protein-2 Released from Polymeric Constructs

Annals of Biomedical Engineering 2021 Volume 49, Pages 2114–2125

Growth factors such as bone morphogenetic protein-2 (BMP-2) are potent tools for tissue engineering. Three-dimensional (3D) printing offers a potential strategy for delivery of BMP-2 from polymeric constructs; however, these biomolecules are sensitive to inactivation by the elevated temperatures commonly employed during extrusion-based 3D printing. Therefore, we aimed to correlate printing temperature to the bioactivity of BMP-2 released from 3D printed constructs composed of a model polymer, poly(propylene fumarate). Following encapsulation of BMP-2 in poly(dl-lactic-co-glycolic acid) particles, growth factor-loaded fibers were fabricated at three different printing temperatures. Resulting constructs underwent 28 days of aqueous degradation for collection of released BMP-2.…

Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks

Tissue Engineering Part C: Methods 2020 Volume 26, Issue 6, Pages 292-305

In this study, we describe the additive manufacturing of porous three-dimensionally (3D) printed ceramic scaffolds prepared with hydroxyapatite (HA), β-tricalcium phosphate (β-TCP), or the combination of both with an extrusion-based process. The scaffolds were printed using a novel ceramic-based ink with reproducible printability and storability properties. After sintering at 1200°C, the scaffolds were characterized in terms of structure, mechanical properties, and dissolution in aqueous medium. Microcomputed tomography and scanning electron microscopy analyses revealed that the structure of the scaffolds, and more specifically, pore size, porosity, and isotropic dimensions were not significantly affected by the sintering process, resulting in scaffolds that…

3D Printing of Tissue Engineering Scaffolds with Horizontal Pore and Composition Gradients

Tissue Engineering Part C: Methods 2019 Volume 25, Issue 7, Pages 411-420

This work investigated a new 3D-printing methodology to prepare porous scaffolds containing horizontal pore and composition gradients. To achieve that, a multimaterial printing technology developed in our laboratory was adapted to incorporate pore gradients. Fibers were printed by welding segments with unique material compositions and fiber diameters. Particularly, we focused on the preparation of model composite poly(ε-caprolactone)-based scaffolds with radial gradients of particulate hydroxyapatite (HA) content (higher concentrations in the outer region of the scaffold) and porosity (higher in the inner region). The morphology of the scaffolds revealed that the methodology allowed the fabrication of discrete regions with compressive mechanical…

Multimaterial Segmented Fiber Printing for Gradient Tissue Engineering

Tissue Engineering Part C: Methods 2019 Volume 25, Issue 1, Pages 12-24

In this work, we present a printing method to fabricate scaffolds consisting of multimaterial segmented fibers. Particularly, we developed a reproducible printing process to create single fibers with multiple discrete compositions and control over the distribution of particulate ceramics—namely hydroxyapatite (HA) and β-tricalcium phosphate (TCP)—within poly(ɛ-caprolactone)-based composite scaffolds. Tensile testing revealed that the mechanical integrity of individual segmented fibers was preserved compared with nonsegmented fibers, and microcomputed tomography and thermal analysis confirmed the homogeneous distribution of ceramics incorporated in the fiber compositions. Moreover, we printed and characterized composite scaffolds containing model inverse radial gradients of HA and TCP that could…